What’s New?

Cognition

AMMT

Impellizzeri, F., Leonardi, S., Latella, D., Maggio, M. G., Foti Cuzzola, M., Russo, M., Sessa, E., Bramanti, P., De Luca, R., & Calabrò, R. S. (2020). An integrative cognitive rehabilitation using neurologic music therapy in multiple sclerosis. Medicine, 99(4). https://doi.org/10.1097/md.0000000000018866 

Jacobsen, J.-H., Stelzer, J., Fritz, T. H., Chételat, G., La Joie, R., & Turner, R. (2015). Why musical memory can be preserved in advanced alzheimer’s disease. Brain, 138(8), 2438–2450. https://doi.org/10.1093/brain/awv135 

Leggieri, M., Thaut, M. H., Fornazzari, L., Schweizer, T. A., Barfett, J., Munoz, D. G., & Fischer, C. E. (2019). Music intervention approaches for alzheimer’s disease: A review of the literature. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00132 

Thaut, M. H., Fischer, C. E., Leggieri, M., Vuong, V., Churchill, N. W., Fornazzari, L. R., & Schweizer, T. A. (2020). Neural basis of Long-term musical memory in cognitively IMPAIRED older persons. Alzheimer Disease & Associated Disorders, 34(3), 267–271. https://doi.org/10.1097/wad.0000000000000382 

MMT

Jacobsen, J.-H., Stelzer, J., Fritz, T. H., Chételat, G., La Joie, R., & Turner, R. (2015). Why musical memory can be preserved in advanced alzheimer’s disease. Brain, 138(8), 2438–2450. https://doi.org/10.1093/brain/awv135 

Knott, D., & Thaut, M. H. (2018). Musical mnemonics enhance verbal memory in typically developing children. Frontiers in Education, 3. https://doi.org/10.3389/feduc.2018.00031

Leggieri, M., Thaut, M. H., Fornazzari, L., Schweizer, T. A., Barfett, J., Munoz, D. G., & Fischer, C. E. (2019). Music intervention approaches for alzheimer’s disease: A review of the literature. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00132 

Thaut, M. H., Fischer, C. E., Leggieri, M., Vuong, V., Churchill, N. W., Fornazzari, L. R., & Schweizer, T. A. (2020). Neural basis of Long-term musical memory in cognitively IMPAIRED older persons. Alzheimer Disease & Associated Disorders, 34(3), 267–271. https://doi.org/10.1097/wad.0000000000000382 

MEM

Jacobsen, J.-H., Stelzer, J., Fritz, T. H., Chételat, G., La Joie, R., & Turner, R. (2015). Why musical memory can be preserved in advanced alzheimer’s disease. Brain, 138(8), 2438–2450. https://doi.org/10.1093/brain/awv135 

Leggieri, M., Thaut, M. H., Fornazzari, L., Schweizer, T. A., Barfett, J., Munoz, D. G., & Fischer, C. E. (2019). Music intervention approaches for alzheimer’s disease: A review of the literature. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00132 

Thaut, M. H., Fischer, C. E., Leggieri, M., Vuong, V., Churchill, N. W., Fornazzari, L. R., & Schweizer, T. A. (2020). Neural basis of Long-term musical memory in cognitively IMPAIRED older persons. Alzheimer Disease & Associated Disorders, 34(3), 267–271. https://doi.org/10.1097/wad.0000000000000382 

MPC

Impellizzeri, F., Leonardi, S., Latella, D., Maggio, M. G., Foti Cuzzola, M., Russo, M., Sessa, E., Bramanti, P., De Luca, R., & Calabrò, R. S. (2020). An integrative cognitive rehabilitation using neurologic music therapy in multiple sclerosis. Medicine, 99(4). https://doi.org/10.1097/md.0000000000018866 

Lepping, R. J., Atchley, R. A., Chrysikou, E., Martin, L. E., Clair, A. A., Ingram, R. E., Simmons, W. K., & Savage, C. R. (2016). Neural processing of emotional musical AND Nonmusical stimuli in depression. PLOS ONE, 11(6). https://doi.org/10.1371/journal.pone.0156859 

APT

Jones, C., Richard, N., & Thaut, M. (2021). Investigating music-based cognitive rehabilitation for individuals with moderate to severe chronic acquired brain injury: A feasibility experiment. NeuroRehabilitation, 48(2), 209–220. https://doi.org/10.3233/nre-208015 

MACT

Jones, C., Richard, N., & Thaut, M. (2021). Investigating music-based cognitive rehabilitation for individuals with moderate to severe chronic acquired brain injury: A feasibility experiment. NeuroRehabilitation, 48(2), 209–220. https://doi.org/10.3233/nre-208015 

van Alphen, R., Stams, G. J., & Hakvoort, L. (2019). Musical attention control training for psychotic psychiatric patients: An experimental pilot study in a forensic psychiatric hospital. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00570 

MNT

Kang, K., & Thaut, M. H. (2019). Musical neglect training for chronic persistent unilateral visual neglect post-stroke. Frontiers in Neurology, 10. https://doi.org/10.3389/fneur.2019.00474

Sensorimotor

RAS

Braun Janzen, T., Haase, M., & Thaut, M. H. (2019). Rhythmic priming across effector systems: A randomized controlled trial with parkinson’s disease patients. Human Movement Science, 64, 355–365. https://doi.org/10.1016/j.humov.2019.03.001 

Buard, I., Dewispelaere, W. B., Thaut, M., & Kluger, B. M. (2019). Preliminary neurophysiological evidence of altered cortical activity and connectivity with neurologic music therapy in parkinson’s disease. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00105 

Bukowska, A. A., Krężałek, P., Mirek, E., Bujas, P., & Marchewka, A. (2016). Neurologic music therapy training for mobility and stability rehabilitation with parkinson’s disease – a pilot study. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00710 

Ghai, S., Ghai, I., Schmitz, G., & Effenberg, A. O. (2018). Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-16232-5 

Koshimori, Y., & Thaut, M. H. (2018). Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in parkinson’s disease. Ageing Research Reviews, 47, 133–139. https://doi.org/10.1016/j.arr.2018.07.001 

Koshimori, Y., Strafella, A. P., Valli, M., Sharma, V., Cho, S.-soo, Houle, S., & Thaut, M. H. (2019). Motor synchronization to Rhythmic auditory Stimulation (RAS) ATTENUATES Dopaminergic responses in ventral striatum in young HEALTHY adults: [11C]-(+)-PHNO PET Study. Frontiers in Neuroscience, 13. https://doi.org/10.3389/fnins.2019.00106 

Pau, M., Corona, F., Pili, R., Casula, C., Sors, F., Agostini, T., Cossu, G., Guicciardi, M., & Murgia, M. (2016). Effects of physical rehabilitation integrated with Rhythmic auditory stimulation ON Spatio-Temporal and KINEMATIC parameters of gait in PARKINSON’S DISEASE. Frontiers in Neurology, 7. https://doi.org/10.3389/fneur.2016.00126 

Sacrey, L.-A. R., Clark, C. A., & Whishaw, I. Q. (2009). Music attenuates excessive visual guidance of Skilled reaching in advanced but not Mild Parkinson’s disease. PLoS ONE, 4(8). https://doi.org/10.1371/journal.pone.0006841 

Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00244 

Thaut, M. H., Rice, R. R., Braun Janzen, T., Hurt-Thaut, C. P., & McIntosh, G. C. (2018). Rhythmic auditory stimulation for reduction of falls in parkinson’s disease: A randomized controlled study. Clinical Rehabilitation, 33(1), 34–43. https://doi.org/10.1177/0269215518788615 

Sheridan, C., Thaut, C., Brooks, D., & Patterson, K. K. (2021). Feasibility of a Rhythmic auditory STIMULATION gait training program in community-dwelling adults after Tbi: A case report. NeuroRehabilitation, 48(2), 221–230. https://doi.org/10.3233/nre-208016 

TIMP

Bukowska, A. A., Krężałek, P., Mirek, E., Bujas, P., & Marchewka, A. (2016). Neurologic music therapy training for mobility and stability rehabilitation with parkinson’s disease – a pilot study. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00710 

Haire, C. M., Vuong, V., Tremblay, L., Patterson, K. K., Chen, J. L., & Thaut, M. H. (2021). Effects of therapeutic instrumental music performance and motor imagery on chronic post-stroke cognition and affect: A randomized controlled trial. NeuroRehabilitation, 48(2), 195–208. https://doi.org/10.3233/nre-208014 

Sacrey, L.-A. R., Clark, C. A., & Whishaw, I. Q. (2009). Music attenuates excessive visual guidance of Skilled reaching in advanced but not Mild Parkinson’s disease. PLoS ONE, 4(8). https://doi.org/10.1371/journal.pone.0006841 

Schaffert, N., Braun Janzen, T., Ploigt, R., Schlüter, S., Vuong, V., & Thaut, M. H. (2020). Development and evaluation of a novel music-based therapeutic device for upper extremity movement training: A pre-clinical, single-arm trial. PLOS ONE, 15(11). https://doi.org/10.1371/journal.pone.0242552 

Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00244 

PSE

Bukowska, A. A., Krężałek, P., Mirek, E., Bujas, P., & Marchewka, A. (2016). Neurologic music therapy training for mobility and stability rehabilitation with parkinson’s disease – a pilot study. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00710 

Sacrey, L.-A. R., Clark, C. A., & Whishaw, I. Q. (2009). Music attenuates excessive visual guidance of Skilled reaching in advanced but not Mild Parkinson’s disease. PLoS ONE, 4(8). https://doi.org/10.1371/journal.pone.0006841

Schaffert, N., Janzen, T. B., Mattes, K., & Thaut, M. H. (2019). A review on the relationship between sound and movement in sports and rehabilitation. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00244 

Speech and Language

DSLM

Janzen, T. B., & Thaut, M. H. (2018). Rethinking the role of music in the neurodevelopment of autism spectrum disorder. Music & Science, 1, 205920431876963. https://doi.org/10.1177/2059204318769639 

RSC

Kotz, S. A., & Gunter, T. C. (2015). Can rhythmic auditory cuing remediate language-related deficits in parkinson’s disease? Annals of the New York Academy of Sciences, 1337(1), 62–68. https://doi.org/10.1111/nyas.12657 

VIT

Santoni, C., de Boer, G., Thaut, M., & Bressmann, T. (2020). Influence of ALTERED auditory feedback On Oral-nasal balance in song. Journal of Voice, 34(1). https://doi.org/10.1016/j.jvoice.2018.06.014 

Santoni, C., Thaut, M., & Bressmann, T. (2020). Immediate effects of voice focus adjustments on hypernasal speakers’ nasalance scores. International Journal of Pediatric Otorhinolaryngology, 135, 110107. https://doi.org/10.1016/j.ijporl.2020.110107

General

Braunlich, K., Seger, C. A., Jentink, K. G., Buard, I., Kluger, B. M., & Thaut, M. H. (2018). Rhythmic auditory cues shape neural network recruitment in parkinson’s disease during repetitive motor behavior. European Journal of Neuroscience, 49(6), 849–858. https://doi.org/10.1111/ejn.14227 

Chatterjee , D., Hegde, S., & Thaut, M. (n.d.). Neural plasticity: The substratum of music-based interventions in neurorehabilitation. NeuroRehabilitation. https://pubmed.ncbi.nlm.nih.gov/33579881/. 

Cole, L. P., Henechowicz, T. L., Kang, K., Pranjić, M., Richard, N. M., Tian, G. L., & Hurt-Thaut, C. (2021). Neurologic music therapy via TELEHEALTH: A survey of Clinician experiences, trends, and recommendations during the Covid-19 pandemic. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.648489 

Crasta, J. E., Thaut, M. H., Anderson, C. W., Davies, P. L., & Gavin, W. J. (2018). Auditory priming improves neural synchronization in auditory-motor entrainment. Neuropsychologia, 117, 102–112. https://doi.org/10.1016/j.neuropsychologia.2018.05.017 

Henechowicz, T. L., Chen, J. L., Cohen, L. G., & Thaut, M. H. (2021). The prevalence of the VAL66MET polymorphism IN MUSICIANS: Possible evidence for COMPENSATORY NEUROPLASTICITY from a pilot study. PLOS ONE, 16(6). https://doi.org/10.1371/journal.pone.0245107 

Lai, G., Pantazatos, S. P., Schneider, H., & Hirsch, J. (2012). Neural systems for speech and song in autism. Brain, 135(3), 961–975. https://doi.org/10.1093/brain/awr335 

Thaut, M. H. (2021). Advances in the role of music in neurorehabilitation: Addressing critical gaps in clinical applications. NeuroRehabilitation, 48(2), 153–153. https://doi.org/10.3233/nre-208010 

Thaut, M. H., & Braun Janzen, T. (2019). Neurologic music therapy. Handbook of Interdisciplinary Treatments for Autism Spectrum Disorder, 375–395. https://doi.org/10.1007/978-3-030-13027-5_20